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False Position Method for Finding Root 

 For example, if f(xl) is much closer to 

zero than f(xu), it is likely that the root 

is closer to xl than to xu 

 

 An alternative method that exploits this 

graphical insight is to join f(xl) and f(xu) 

by a straight line. The intersection of 

this line with the x axis represents an 

improved estimate of the root. 

 

 A shortcoming of the bisection method is that, in dividing the interval from xl to 

xu into equal halves, no account is taken of the magnitudes of f(xl) and   

f(xu). 
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 The fact that the replacement of the 

curve by a straight line gives a “false 

position” of the root is the origin of 

the name, method of false position, 

or in Latin, regula falsi. 

 

 It is also called the linear 

interpolation method. 

False Position Method for Finding Root 

Presumption: f(xl) is much closer to zero than f(xu) 
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f(xl) is much closer to zero than f(xu) 

4 



 

  %;5.0;6,4

0101
05.49

)(

.

8.1



 

ErrorApproxBracketRoot

e
c

cf

EqnMotionTurtleSolve

c

In general error in False position 

method decreases much faster 

than bisection method. 

it xl xu xr f(xl) f(xu) f(xr)

Approx. 

error (%)

1 4 6 5.104984 2.253345 -1.82517 -0.39272 _

2 4 5.10498 4.940984 2.253345 -0.39272 -0.07419 3.21255

3 4 4.94098 4.910989 2.253345 -0.07418 -0.01364 0.607051

4 4 4.91099 4.905507 2.253345 -0.01364 -0.0025 0.111633

5 4 4.90551 4.904506 2.253345 -0.0025 -0.00046 0.020419

6 4 4.90451 4.904323 2.253345 -0.00047 -8.5E-05 0.003727

7 4 4.90432 4.904288 2.253345 -8E-05 -1.5E-05 0.000708

8 4 4.90464 4.904347 2.253345 -0.00073 -0.00013 0.001193

9 4 4.90435 4.904293 2.253345 -0.00014 -2.6E-05 0.001081

10 4 4.90429 4.904283 2.253345 -1.9E-05 -3.4E-06 0.000224

11 4 4.90428 4.904281 2.253345 1.75E-06 3.19E-07 3.73E-05
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Error propagation:  

False position vs. 

Bisection Method. 

Slow Convergence in False Position Method, in 

in some cases, Why?? 

f(xu) is much closer to zero than f(xl) 
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• One of the most widely used methods of solving non-linear equations. 

• Single initial guess of root is required. 

• Also known as Newton’s method. 

If the initial guess is at xi, a tangent can be extended from point [xi, f(xi)]. The point 

where the tangent crosses the x-axis usually represents an improved estimate of 

the root. 

Newton Raphson Method for Finding Root 

Graphical presentation of iterative 

progress using Newton’s method 

for finding the root of non-linear 

equation, f(x)=0. 
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Using Taylor series expansion for single variable: 
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If xi+1 is an approximation of a 

root, then f(xi+1) = 0 
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i = 1,2,3,4, … … … 

Two functions namely f(xi) and 

its 1st derivative, f/(xi) are needed 

to estimate the root at each 

iterations. 
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The expression for the estimation of root for Newton Raphson Method is: 

In the form of 
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Convergence criteria for Newton’s method 
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Newton Raphson Method for Finding Root 

To find a root using Newton-Raphson method, do the following: 

 

1) Let the initial guess be xi 

2) Find xi+1 by using Eq. (A) 

3) Let xi= xi+1 repeat steps 2 and 3 until you feel your root is accurate 

enough. 
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Example: Solve  the turtle problem by using Newton’s method. 

Start with, ci= 3.0. 
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It. xi f(xi) f'(xi) xr Error(%)

1 3.000000 6.591390 -5.394966 4.221767 28.9397

2 4.221767 1.837451 -2.793232 4.879589 13.4811

3 4.879589 0.245193 -2.096774 4.996528 2.340392

4 4.996528 0.005707 -2.000295 4.999381 0.057066

5 4.999381 0.000003 -1.998024 4.999382 3.24E-05

6 4.999382 0.000000 -1.998023 4.999382 1.05E-11

7 4.999382 0.000000 -1.998023 4.999382 0
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Error Propagation of Newton’s Method 
Using Taylor series expansion for single variable: 
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Now, if xr is the exact/real root of f(x), then f(xr) = 0 and Taylor series can be 

expanded to xr from xi accordingly- 
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Now eq(ii)-eq(i) gives: 
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said Newton’s method converges quadratically. 
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Pitfalls of Newton’s Method 

Case-A: Case where an 

inflection point [Decreasing 

slope; f//(x)=0] occurs in the 

vicinity of a root. Iterations 

begins at x0 progressively 

diverge from the root. 

Case-B: Case shows the 

tendency of the Newton’s 

method to oscillate around 

a local maximum or 

minimum. 
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Case-C: Case shows how 

an initial guess that is close 

to one root can jump to a 

location several roots away. 

This is due to near zero 

slope. 

Case-D: Case shows an 

encounter of zero slope 

(f/(x)=0). In this case the 

solution shoots off 

horizontally and never hits 

the x-axis. (diverge- a 

disaster) 
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