ME 261: Numerical Analysis

Lecture-6: Root Finding

Md. Tanver Hossain Department of Mechanical Engineering, BUET <u>http://tantusher.buet.ac.bd</u>

False Position Method for Finding Root

- A shortcoming of the bisection method is that, in dividing the interval from x_l to x_u into equal halves, no account is taken of the magnitudes of f(x_l) and f(x_u).
- For example, if f(x_l) is much closer to zero than f(x_u), it is likely that the root is closer to x_l than to x_u
- An alternative method that exploits this graphical insight is to join f(x₁) and f(x_u) by a straight line. The intersection of this line with the x axis represents an improved estimate of the root.

False Position Method for Finding Root

- The fact that the replacement of the curve by a straight line gives a "false position" of the root is the origin of the name, method of false position, or in Latin, regula falsi.
- It is also called the linear interpolation method.

Presumption: $f(x_i)$ is much closer to zero than $f(x_u)$

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u}$$
$$f(x_l)(x_r - x_u) = f(x_u)(x_r - x_l)$$

Collect terms and rearrange:

$$x_r [f(x_l) - f(x_u)] = x_u f(x_l) - x_l f(x_u)$$

$$x_r = \frac{x_u f(x_l) - x_l f(x_u)}{f(x_l) - f(x_u)}$$

$$x_{r} = \frac{x_{u} f(x_{l})}{f(x_{l}) - f(x_{u})} - \frac{x_{l} f(x_{u})}{f(x_{l}) - f(x_{u})}$$

$$x_r = x_u + \frac{x_u f(x_l)}{f(x_l) - f(x_u)} - x_u - \frac{x_l f(x_u)}{f(x_l) - f(x_u)}$$

$$f(x_u)(x_l - x_u)$$

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

 $f(x_1)$ is much closer to zero than $f(x_1)$

$$x_{r} = x_{u} + \frac{x_{u} f(x_{u})}{f(x_{l}) - f(x_{u})} - \frac{x_{l} f(x_{u})}{f(x_{l}) - f(x_{u})}$$

Solve Turtle Motion Eqn.

$$f(c) = \frac{49.05}{c} \left(1 - e^{-1.8c} \right) - 10 = 0$$

Root Bracket [4,6]; *Approx Error* \leq 0.5%;

In general error in False position method decreases much faster than bisection method.

$$x_{r} = \frac{x_{u} f(x_{l}) - x_{l} f(x_{u})}{f(x_{l}) - f(x_{u})}$$

							Approx.
it	xl	xu	xr	f(xl)	f(xu)	f(xr)	error (%)
1	4	6	5.104984	2.253345	-1.82517	-0.39272	_
2	4	5.10498	4.940984	2.253345	-0.39272	-0.07419	3.21255
3	4	4.94098	4.910989	2.253345	-0.07418	-0.01364	0.607051
4	4	4.91099	4.905507	2.253345	-0.01364	-0.0025	0.111633
5	4	4.90551	4.904506	2.253345	-0.0025	-0.00046	0.020419
6	4	4.90451	4.904323	2.253345	-0.00047	-8.5E-05	0.003727
7	4	4.90432	4.904288	2.253345	-8E-05	-1.5E-05	0.000708
8	4	4.90464	4.904347	2.253345	-0.00073	-0.00013	0.001193
9	4	4.90435	4.904293	2.253345	-0.00014	-2.6E-05	0.001081
10	4	4.90429	4.904283	2.253345	-1.9E-05	-3.4E-06	0.000224
11	4	4.90428	4.904281	2.253345	1.75E-06	3.19E-07	3.73E-05

Error propagation: False position vs. Bisection Method. Slow Convergence in False Position Method, in in some cases, Why?? $f(x_u)$ is much closer to zero than $f(x_l)$

Newton Raphson Method for Finding Root

- One of the most widely used methods of solving non-linear equations.
- Single initial guess of root is required.
- Also known as Newton's method.

If the initial guess is at x_i , a tangent can be extended from point $[x_i, f(x_i)]$. The point where the tangent crosses the x-axis usually represents an improved estimate of the root.

Graphical presentation of iterative progress using Newton's method for finding the root of non-linear equation, f(x)=0.

Using Taylor series expansion for single variable:

$$f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i)f'(x_i) + \frac{(x_{i+1} - x_i)^2}{2!}f''(x_i) + \dots + \text{H.O.T.}$$

$$\Rightarrow f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i)f'(x_i) \quad [\text{Truncating the series after 1st derivative}]$$

The expression for the estimation of root for **Newton Raphson Method** is:

$$\Rightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

In the form of
 $x_{i+1} = g(x_i)$: F.P.I.
It is known that the convergence
criteria for F.P.I. is-
 $|g'(x_i)| < 1$
 $\Rightarrow \left| \frac{d}{dx} (x_i - \frac{f(x_i)}{f'(x_i)}) \right| < 1$
 $\Rightarrow |f(x_i)f''(x_i)| < [f'(x_i)]^2$

Convergence criteria for Newton's method

Newton Raphson Method for Finding Root

 $f'(x_i) = \frac{f(x_i)}{x_i - x_{i+1}}$

 $x_i - x_{i+1} = \frac{f(x_i)}{f'(x_i)}$

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ (A)

To find a root using Newton-Raphson method, do the following:

1) Let the initial guess be x_i

2) Find x_{i+1} by using Eq. (A)

3) Let $x_i = x_{i+1}$ repeat steps 2 and 3 until you feel your root is accurate enough.

Example: Solve the turtle problem by using Newton's method. Start with, $c_i = 3.0$.

$$f(c) = \frac{50}{c} \left(1 - e^{-\frac{9c}{5}} \right) - 10$$

$$f(c) = \frac{50}{c} \left(1 - e^{-\frac{9c}{5}} \right) - 10$$

$$f(c) = \frac{50}{c} - \frac{50}{c} e^{-\frac{9c}{5}} - 10$$

$$f'(c) = -\frac{50}{c^2} - 50 \left(\left(-\frac{1}{c^2} e^{-\frac{9c}{5}} \right) + \left(\frac{1}{c} \right) e^{-\left(\frac{9}{5}\right)c} \left(-\frac{9}{5} \right) \right)$$

$$= -\frac{50}{c^2} + \frac{50}{c^2} e^{-\left(\frac{9}{5}\right)c} + 50 \left(\frac{9}{5} \right) e^{-\left(\frac{9}{5}\right)c} \left(\frac{1}{c} \right)$$

$$= \frac{50}{c} \left[\left(\frac{1}{c} + \frac{9}{5} \right) e^{-\left(\frac{9}{5}\right)c} - \frac{1}{c} \right]$$

Drag=*cv*
Drag=*cv*

Newton Raphson Method for Finding Root

$$\Rightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \qquad X_i$$

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

lt.	X _i	f(x _i)	f'(x _i)	x _r	Error(%)
1	3.000000	6.591390	-5.394966	4.221767	28.9397
2	4.221767	1.837451	-2.793232	4.879589	13.4811
3	4.879589	0.245193	-2.096774	4.996528	2.340392
4	4.996528	0.005707	-2.000295	4.999381	0.057066
5	4.999381	0.000003	-1.998024	4.999382	3.24E-05
6	4.999382	0.000000	-1.998023	4.999382	1.05E-11
7	4.999382	0.000000	-1.998023	4.999382	0

12

= 3.0

Error Propagation of Newton's Method

Using Taylor series expansion for single variable:

$$f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i)f'(x_i) + \frac{(x_{i+1} - x_i)^2}{2!}f''(x_i) + \dots + \text{H.O.T.}$$

$$\Rightarrow f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i)f'(x_i) \qquad [\text{Truncating the series after 1st derivative}]$$

If x_{i+1} is an **approximation of a root** of f(x), then $f(x_{i+1}) = 0$

 $0 = f(x_i) + (x_{i+1} - x_i)f'(x_i)$ (i)

Now, if x_r is the **exact/real root** of f(x), then $f(x_r) = 0$ and Taylor series can be expanded to x_r from x_i accordingly-

$$f(x_r) = f(x_i) + (x_r - x_i)f'(x_i) + \frac{(x_r - x_i)^2}{2!}f''(x_i) + \dots \dots + \text{H.O.T.}$$

$$\Rightarrow f(x_r) = f(x_i) + (x_r - x_i)f'(x_i) + \frac{(x_r - x_i)^2}{2!}f''(x_i) \text{ [Truncating after 2nd derivative]}$$

$$\Rightarrow 0 = f(x_i) + (x_r - x_i)f'(x_i) + \frac{(x_r - x_i)^2}{2!}f''(x_i) \qquad (ii)$$

Now eq(ii)-eq(i) gives:

$$0 = (x_r - x_i - x_{i+1} + x_i)f'(x_i) + \frac{(x_r - x_i)^2}{2!}f''(x_i)$$

$$\Rightarrow 0 = (x_r - x_{i+1})f'(x_i) + \frac{(x_r - x_i)^{-1}}{2!}f''(x_i)$$

Absolute Error at iteration i + 1, $E_{i+1} = x_r - x_{i+1}$

Absolute Error at iteration $i, E_i = x_r - x_i$

Current error is roughly proportional to the square of the previous error. Thus, it is said **Newton's method converges quadratically**.

This means that the number of correct decimal places approximately doubles with each iteration

Case-A: Case where an inflection point [Decreasing slope; f''(x)=0] occurs in the vicinity of a root. Iterations begins at x_0 progressively diverge from the root.

Case-B: Case shows the tendency of the Newton's method to oscillate around a local maximum or minimum.

Pitfalls of Newton's Method

Case-C: Case shows how an initial guess that is close to one root can jump to a location several roots away. This is due to near zero slope.

Case-D: Case shows an encounter of zero slope (f'(x)=0). In this case the solution shoots off horizontally and never hits the x-axis. (diverge- a disaster)

16